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1.0 Introduction

This document describes the Case 2 chlorophyll a algorithm.  The algorithm is based on a semi-

analytical, bio-optical model of remote-sensing reflectance, R (8), where R (8) is defined as the water-rs rs

leaving radiance, L (8), divided by the downwelling irradiance just above the sea surface, E (8,0 ).  Thew d
+

R (8) model has two free parameters, the absorption coefficient due to phytoplankton at 675 nm,rs

a (675), and the absorption coefficient due to gelbstoff at 400 nm, a (400).  The R  model has manyN g rs

other parameters which are fixed, or can be specified based on the region and season of the MODIS

scene.  R  is modeled using these parameters at each of the visible-range MODIS wavelengths, 8 . rs i

R (8 ) is derived at each pixel from the normalized water-leaving radiance, L (8 ), measured byrs i wn i

MODIS.  These R (8 ) values are put into the model, the model is inverted, and a (675) and a (400) arers i N g

computed.  Chlorophyll a concentration is then derived simply from the a (675) value.  In highly turbidN

waters, an empirical algorithm is used to estimate chlorophyll concentration.  The algorithm also outputs

both the total absorption coefficients, a(8 ), and the phytoplankton absorption coefficients, a (8 ), at thei N i

visible MODIS wavelengths.

2.0 Overview and Background Information

According to the optical classification by Morel and Prieur (1977), oceanic waters may be

characterized as Case 1, in which the optical properties are dominated by chlorophyll and associated and

covarying detrital pigments, or as Case 2, in which other substances which do not covary with

chlorophyll also affect the optical properties.  Such substances include gelbstoff, suspended sediments,

coccolithophores, detritus, and bacteria.  Pigment retrievals from CZCS data in Case 1 waters have

achieved reasonable results (± 40% for best cases, Gordon et al., 1983).  However, the non-chlorophyll-

covarying substances in Case 2 waters have caused the retrieval of pigment concentrations to have

inaccuracies as high as 133% (Carder et al., 1991).

Marine colored dissolved organic matter (CDOM), also called gelbstoff, absorbs light in an

exponentially decreasing manner as a function of wavelength.  Pheopigments, detritus, and bacteria

similarly absorb more strongly at 412 nm than they do at 443 nm.  Phytoplankton, on the other hand,

absorb more strongly at 443 nm than at 412 nm.  Absorption largely determines the amount of light that

exits the sea surface at each wavelength.  Thus, by measuring the relative amounts of light leaving the

sea surface at those two wavelengths, we can estimate the relative amounts of phytoplankton and the

detrital products mentioned above.

  The R  model has a few parameters that cannot be fixed and applied to the entire globe, i.e., theyrs
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are site- and season-specific.  This is due to the inherent variability of many bio-optical constituents.  For

example, absorption per unit chlorophyll by phytoplankton can change with species, and with nutrient

and lighting conditions by as much as a factor of five (Morel and Bricaud, 1981; Carder et al., 1991;

Morel et al., 1993).  These same conditions can also effect the spectral shape of the absorption.  Also,

particle size and concentration both have a significant effect on the spectral backscattering coefficient,

b (8), of ocean water.  This is so because pure water backscatters as - 8 , large particles backscatter as -b
B4

8 , and smaller diameter detritus and bacteria backscatter with a spectral dependence somewhere inB0

between the two (Morel and Ahn, 1990; 1991).  Many of these factors covary, which allowed the simple

wavelength-ratio algorithms of the CZCS (Gordon and Morel, 1983) to work fairly well.  We have tried

to understand many of these individual covariances and have developed empirical expressions for several

individual bio-optical parameters.  By analyzing individual components of the model, we can gain a

deeper understanding of the processes.

Extensive field data sets are needed to allow seamless modification of the model parameters with

time and space.  The changes required will be due mostly to changes in the dominant plankton groups

present and the subsequent effects on bio-optical parameters such as pigment packaging.  Acquiring such

data sets on a global scale should be a major community goal during the next few years.  We have

developed a scenario that can both guide the parameterization process and provide an initial

implementation of the algorithm for much of the ocean (tropics, subtropics, and summer temperate). 

Parameterization for high-latitude and upwelling waters has also been developed, and a preliminary

method to smoothly transition between regions will be implemented in Versions 2.0 and 2.1 of the

algorithm code.

2.1 Experimental Objective

The main data product is chlorophyll a concentration, [chl a], which can be used as an indicator

of plankton biomass, as an input to primary production models, or to trace oceanographic currents, jets,

and plumes.  Other output products are a (675), a (400), a (8 ), and a(8 ).  a (8 ) is used in the IPAR/ARPN g N i i N i

MODIS algorithm.  a (400) by itself can be used to map river plumes, to determine diffuse attenuation atg

that wavelength, or to calculate dissolved organic carbon (DOC) standing stocks and fluxes.  In order to

calculate DOC, we need to know how DOC concentration is related to DOC absorption.  As coastal,

estuarine, and other Case 2 environments become increasingly recognized as important areas of study,

algorithms that can deal with the complex bio-optical properties of these regions are required.
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2.2 Historical Perspective

CZCS algorithms for estimating [chl a] plus pheophytin a concentrations perform quite well for

regions of the ocean where scattering and absorbing components of seawater covary with these pigments,

i.e., in Case 1 waters (Gordon and Morel, 1983; Gordon et al., 1983).  A number of empirical and semi-

analytical optical models have been developed to simulate the behavior of the underwater light field for

such waters (Morel and Prieur, 1977; Baker and Smith, 1981; Baker and Smith, 1982; Gordon et al.,

1988; Morel, 1988; Mitchell and Holm-Hansen, 1991).  Such models have been used as the basis for

classifying water types and/or for developing remote sensing algorithms.

However, the accuracies of these models decrease when environmental conditions depart from

those representative of the data set used to empirically derive the covariance relationships.  For instance,

CDOM is produced when grazing, photolysis, and other mechanisms degrade the viable plant matter at

and downstream from phytoplankton blooms.  The CDOM-to-chlorophyll ratio will change dramatically

for a parcel of upwelled water over a relatively short time, from chlorophyll-rich and CDOM-poor to

CDOM-rich and chlorophyll-poor.  Solid evidence for the occurrence of this scenario can be found in

two separate studies.  Peacock et al. (1988) found that absorption attributed to CDOM at 440 nm was at

least 16 fold that due to phytoplankton pigments within an offshore jet from an upwelling region,

whereas pigments were the dominant absorption agents at the upwelling center near the coast.  Similarly,

Carder et al. (1989) found that particulate absorption at 440 nm decreased 13 fold while CDOM

absorption at 440 nm increased by 60% in ten days for a phytoplankton bloom tracked from the

Mississippi River plume to Cape San Blas.  This widely varying CDOM-to-chlorophyll ratio has a

profound effect on upwelled radiance in the blue 443 nm band of the CZCS, and a smaller but still

significant effect in the green 520 nm band.  The correspondence in absorption at 443 nm and 520 nm

between CDOM and chlorophyll creates erroneously high estimates of pigment concentration in those

models which rely solely upon either of these spectral bands to indicate absorption due to phytoplankton.

Carder et al. (1991) proposed that a short wavelength channel at around 410 nm could be used to

distinguish CDOM (and other degradation products) from chlorophyll.  A channel at 412 nm will be

available not only on MODIS, but also on the Ocean Color and Temperature Scanner (OCTS) and on the

Sea-Viewing-Wide-Field-Sensor (SeaWiFS).  The Case 2 chlorophyll a algorithm will be thoroughly

tested during the SeaWiFS project.

2.3 Instrument Characteristics

The algorithm requires as input L  at the MODIS wavebands 8B13, centered at 412, 443, 488,wn
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531, 551, and 667 nm, respectively.  R  is easily derived from L  as R  = L  F , where F  is thers wn rs wn 0 0

extraterrestrial solar irradiance.  The 1000 m resolution and near daily coverage of MODIS will allow the

observation of meso-scale oceanographic features in coastal and estuarine environments, areas seen to be

increasingly important in many marine science studies.

3.0 Algorithm Description

Morel and Gordon (1980) describe three approaches to interpret ocean color data in terms of the

in situ optical constituents: empirical, semi-empirical, and analytical.  In the analytical approach,

radiative transfer theory provides a relationship between upwelling irradiance or radiance and the in situ

constituents.  Then constituent concentrations are derived from irradiance or radiance values measured at

several wavelengths by inversion of the resultant system of equations.  The Case 2 algorithm uses this

approach and the term "semi-analytical" is invoked because pieces of the radiative model are expressed

by empirical relationships.

3.1 Theoretical Description

3.1.1 Physics of Problem

After light enters the ocean, some of it is eventually scattered back up through the surface.  This

light is called the water-leaving radiance, L (8), and it can be detected from space.  The magnitude,w

spectral variation, and angular distribution of this radiance depend on: the absorption and backscattering

coefficients of the seawater, a(8) and b (8), respectively (known as the inherent optical properties); theb

downwelling irradiance incident on the sea surface, E (8,0 ); and the angular distribution of the lightd
+

within the ocean.  To make things easier, we divide seawater into three components, each one having

distinct optical properties of its own.  These components are the seawater itself (water and salts), the

particle fraction, and the dissolved fraction.  Fortunately, a(8) is simply equal to the sum of the

absorption coefficients for each component, and, to first order, b (8) is equal to the sum of theb

backscattering coefficients.  If we can accurately describe or model each spectrally distinct component of

the absorption and backscattering coefficients, then we can determine the magnitude of each one from

measurements of L (8) and E (0 ,8), given some assumptions about the angular distribution of light inw d
+

the water.  The key here is to accurately model the spectral behavior of a(8) for each component.  The

spectral behavior of b (8) is not as important.b
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3.1.2 Mathematical Description of Algorithm

3.1.2.1 R  Modelrs

The R  model is given by the following general equation, which is adapted from Lee et al.rs

(1994):

where f is an empirical factor averaging about 0.32B0.33 (Gordon et al., 1975; Morel and Prieur, 1977;

Jerome et al., 1988; Kirk, 1991), t is the transmittance of the air-sea interface, Q(8) is the upwelling

irradiance-to-radiance ratio E (8)/L (8), and n is the real part of the index of refraction of seawater.  Byu u

making three approximations, Eq. 1 can be greatly simplified.

1)  In general, f is a function of the solar zenith angle, 2  (Kirk, 1984; Jerome et al., 1988; Morel0

and Gentili, 1991).  However, Morel and Gentili (1993) have shown that the ratio f/Q is relatively

independent of 2  for sun and satellite viewing angles expected for the MODIS orbit.  They estimate that0

f/Q = 0.0936, 0.0944, 0.0929, and 0.0881, (standard deviation ± 0.005), for 8 = 440, 500, 565, and 665

nm, respectively.  Also, Gordon et al. (1988) estimates that f/Q = 0.0949, at least for 2  $ 20E.  Thus, we0

assume that f/Q is independent of 8 and 2  for all MODIS wavebands of interest, except perhaps for the0

band centered at 667 nm.

2)  t /n  is approximately equal to 0.54, and although it can change with sea-state (Austin, 1974),2 2

it is relatively independent of wavelength.

3)  Many studies have confirmed that b (8) is usually much smaller than a(8) and can thus beb

safely removed from the denominator of Eq. 1 (Morel and Prieur, 1977; references cited in Gordon and

Morel, 1983), except for highly turbid waters.

These three approximations lead to a simplified version of Eq. 1,

where the "constant" is unchanging with respect to 8 and 2 .  The value of the constant is not relevant to0

the algorithm since, as will be shown later, the algorithm uses spectral ratios of R (8) and the constantrs

term factors out.

In the following sections, both b (8) and a(8) will be divided into several separate terms.  Eachb
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term will be described empirically.  The equations are written in a general fashion C i.e., the empirically

derived parameters that describe each term are written as variables C and the actual values of the

parameters that are used in the algorithm are shown in Table 1.

3.1.2.2 Backscattering Term

The total backscattering coefficient, b (8), can be expanded asb

where the subscripts "w" and "p" refer to water and particles, respectively.  b (8) is constant and wellbw

known (Smith and Baker, 1981).  b (8) is modeled asbp

The magnitude of particle backscattering is indicated by X, which is approximately equal to b (555),bp

while Y describes the spectral shape of the particle backscattering.

We now need to develop expressions for X and Y.  To do this, we turn to the work of Lee et al.

(1994).  They use a slightly different form of the R  model, summarized by the following threers

equations:

The main differences here are that b /Q is modeled explicitly rather than just b  (compare Eqs. 3 and 6),b b

and that 400 nm is used rather than 551 nm as the normalizing point in the particle backscattering term
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(9)

(compare Eqs. 4 and 7).  Eq. 6 is an approximation derived from single and quasi-single scattering theory

(Lee et al., 1994).

They developed a method to determine X’ and Y’ empirically for a given optical station by model

inversion.  The method uses measured values of R (8) and a(8) at . 200 wavelengths.  The best-fitrs

values for X’ and Y’ are determined using Eqs. 5B7 on a station-by-station basis.  Using this method we

determined X’ and Y’ for a number of optical stations taken from 4 separate cruises to the Gulf of

Mexico.  We then converted the X’ and Y’ values to our X and Y via

using a value of 3.55 for Q .  Next, the converted X and Y values were compared to the R ( 8) valuesp rs

measured at the corresponding station with the purpose of finding empirical relationships for both X and

Y as a function of R (8) at one or more of the MODIS wavelengths.  Once this is done, X and Y can bers

estimated from MODIS data.  These empirical relationships are described below.

3.1.2.2.1 Expression for X

Since X is approximately proportional to the magnitude of the particle backscattering, X should

covary with R  at one of the longer MODIS wavelengths, i.e., at 551 or 667 nm.  This is so because atrs

these wavelengths water absorption dominates a(8) and R  becomes approximately proportional to brs b

(see Eq. 2), at least for non-turbid waters.  We chose the 551 nm channel because the 667 nm channel

may be contaminated by chlorophyll fluorescence and because the water absorption at 667 nm is so high

that the water-leaving radiance signal there may be too small to be accurate.

The general expression for X is

where X  and X  are empirically derived constants.  Linear regression performed on the derived values of0 1

X vs. R (551) taken from four cruises to the Gulf of Mexico (CP92, Tambax 2, GOMEX, and COLOR)rs
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Figure 1.  X vs. R (551).  The line is the linear regressionrs

equation X = B0.00182 + 2.058 R (551) (n = 53, r  = 0.96).rs
2

(10)

resulted in X  and X  values of B0.00182 and 2.058 (n = 53, r  = 0.96).  Figure 1 shows the regression0 1
2

graphically.  If X is determined to be negative from Eq. 9 it is set to zero.

The values of X  and X  that are used in this version of the Case 2 chlorophyll algorithm are0 1

probably adequate for most of the globe and they are listed in Table 1.  For regions influenced by rivers

outflows, these parameters should be determined on a site-specific basis.

3.1.2.2.2 Expression for Y

Y was found to covary in a rather general way with the ratio R (443)/R (488).  Variations inrs rs

numerator and denominator values of this ratio are largely determined by absorption due to

phytoplankton and CDOM.  Absorption due to water is about the same and low at both wavelengths. 

Thus, to the extent that phytoplankton and CDOM absorption covary, the spectral ratio of the absorption

coefficients, a(443)/a(488), will be only weakly dependent on pigment concentration.  Therefore, the

spectral ratio of backscattering coefficients should have a significant effect on the spectral ratio of R  atrs

these wavelengths.  Y is thus represented as a linear function of R (443)/R (488),rs rs

where Y  and Y  are empirically derived constants.0 1
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12

Figure 2.  Y vs. R (443)/R (488).  The line is the linearrs rs

regression Y = B1.13 + 2.57 R (443)/R (488) (n = 22, r =rs rs
2

0.59).

(11)

Accurate measurements of a (8) and accurate removal of reflected skylight from the Rg rs

measurements are critical in determining Y by model inversion.  Only data from the GOMEX and

COLOR cruises are used here because the a (8) values were determined with a long-pathg

spectrophotometer (Peacock et al., 1994).  Linear regression of Y on R (443)/R (488) for stations fromrs rs

these two cruises resulted in Y  and Y  values of B1.13 and 2.57 (n = 22, r  = 0.59).  Figure 2 shows the0 1
2

regression graphically.  If Y is determined to be negative from Eq. 10 it is set to zero.  A number of other

spectral ratios of R (8) were tested, but the 443:488 ratio had the highest correlation with Y.  Thers

sensitivity of this method to errors in a (8) and reflected skylight estimates likely accounts for some ofg

the scatter about the regression line.

The Y parameter should be large when the backscattering is due to small particles and/or water

and vice versa (Gordon and Morel, 1983).  In oligotrophic regions we have determined values of Y

greater than 2, while in waters with [chl a] > 10 mg m  the estimated Y values are often . 0.B3

3.1.2.3 Absorption Term

The total absorption coefficient can be expanded as 

where the subscripts "w", "N," "d," and "g" refer to water, phytoplankton, detritus, and CDOM ("g"
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stands for gelbstoff).  a (8) is taken from Pope et al. (1997).  Expressions for a (8), a (8), and a (8) needw N d g

to be developed.

3.1.2.3.1 Expression for aN

The shape of the a (8) spectrum for a given water-mass will change due to the pigment-packageN

effect (i.e., the flattening of absorption peaks with increasing intracellular pigment concentration due to

self-shading; Morel and Bricaud, 1981) and due to changes in pigment composition.  We have found that

for a given region and season, normalizing measured a (8) curves to a (675) results in a smooth variationN N

for a (8)/a (675) vs. a (675) for the MODIS wavebands centered at 8 = 412, 443, 488, 531, and 551 nmN N N

(see Figure 3).  This relationship describes the packaging and pigment effects better than the relationship

between a (8) and [chl a] that was used in previous versions of this algorithm.  This is so because theN
*

a (8) vs. [chl a] relationship requires two separate measurements for each data point C a (8) and [chl a]N N
*

C whereas the a (8)/a (675) vs. a (675) relationship requires only the a (8) measurement.N N N N

A hyperbolic tangent function was chosen to model this relationship in order to ensure that the

value of a (8)/a (675) approaches an asymptote at very high or very low values of a (675) (Carder et al.,N N N

1991).  Using logarithmic scaling for both axes results in the following model equation for a (8) as aN

function of a (675),N

where the parameters a (8)Ba (8) are empirically determined for each MODIS wavelength of interest. 0 3

a (8) is the most important of these parameters, as it is directly proportional to a (8).  For simplicity,0 N

only a (8) and a (8) are varied to parameterize a (8), with a (8) and a (8) being set to the constant values0 1 N 2 3

of B0.5 and 0.010, respectively.  Figure 3 shows the measured data and the modeled curves for a (8)N

measurements taken from the GOMEX, COLOR, and TN048 cruises.  The parameters a (8)Ba (8) are0 3

listed in Table 1.

The method used to determine absorption coefficients for particles and for detritus involves

filtering as much as 4 liters of water through a 25 mm diameter, Gelman glass-fiber filter (GFF).  This

large amount of water is used to concentrate the sample enough for accurate measurements of the pad
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Figure 3.  a (8)/a (675) vs. a (675) for each MODISN N N

waveband.  The number in the top right corner indicates 8.
The lines are described by Eq. 12 using the parameters
listed in  Table 1, and they represent the minimum sum of
squared errors for modeled vs. measured values of
a (8)/a (675).N N

optical density (OD) to be determined (Shibata, 1958; Mitchell, 1990; Nelson and Robertson, 1993; 

Moore et al., 1995).  In order to estimate absorption coefficients from the OD measurements, an optical

path elongation factor, called $, which is dependent upon OD, is employed.  Recently however, it has

been shown that $ varies with the particle size prevalent to a region (Moore et al., 1995).  This happens

because smaller particles get deeply imbedded into the pad, providing a greater absorption cross-section

for photons scattered numerous times than for the large particles remaining at the surface of the pad.  For

our work, we chose a $ factor appropriate for small, subtropical particles by averaging two published $

factors, one developed for detritus (Nelson and Robertson, 1993) and one for synechococcus (Moore et

al., 1995).  Our $ factor is



' 1.0 % 0.6 OD &0.5

ag( ) ' ag(400) exp
&S( &400)
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(13)

(14)

3.1.2.3.2 Expression for a  and ad g

a (8) and a (8) can both be fit to a curve of the form a (8) = a (400) exp[BS (8B400)] where thed g x x x

subscript "x" refers to either "d" or "g" (Bricaud et al., 1981; Roesler et al., 1989; Carder et al., 1991). 

Due to this similarity in spectral shape, the a (8) term can be eliminated, allowing both detrital andd

CDOM absorption to be represented by a (8).  The combined CDOM and detritus absorption term is thusg

written

where S is empirically determined.  Many researchers have reported that S  = 0.011 nm , on averaged
B1

(Roesler et al., 1989).  For the GOMEX and COLOR cruises, an average value of 0.017 nm  wasB1

measured for S .  Values reported by F. Hoge (personal communication) for the Sargasso Sea wereg

somewhat higher as are those found near swampy regions of the Gulf of Mexico.  The algorithm

performance was optimized by varying S , with the value 0.019 nm  providing the smallest residualg
B1

error compared to field measurements.

As a final note on the R  model,  Eqs. 9B12, and 14 are written in a general way to emphasizers

that the values of the parameters X , X , Y , Y , a , a , and S are not meant to be absolute.  They should0 1 0 1 0 1

be updated and changed as more data become available.  These parameters may also be changed with

region and season to optimize algorithm performance.

3.1.2.4 Inverting the Model

All of the pieces of the reflectance model are now in place.  Via Eqs. 2B4, 9B12, and 14, R (8)rs

can be expressed solely as a function of the "constant" term, R (443), R (488), R (551), a (675), andrs rs rs N

a (400), given values for the parameters for X , X , Y , Y , a (8), a (8), and S.  L (8) from MODIS cang 0 1 0 1 0 1 wn

be converted into R (8) as mentioned previously.  Then, for each pixel, the R  model equation can bers rs

written for each of the 5 available MODIS wavebands yielding 5 equations written in 3 unknowns: the

"constant" term, a (675), and a (400).N g

Using spectral ratios of R  eliminates the "constant" term, since it is largely independent ofrs
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wavelength.  In principle, two spectral ratio equations can be used to solve for the two remaining

unknowns, a (675) and a (400).  Based on the shape of the absorption curve for phytoplankton versusN g

those for CDOM and detritus, equations using spectral ratios of 412:443 and 443:551 for R (8) shouldrs

provide a good separation of the two absorption contributions.  Our two equations are

The right-hand side of each equation is a function of a (675), a (400), R (443), R (488) and R (551). N g rs rs rs

Since the R  values are provided on input, we now have two equations in two unknowns.  The equationsrs

can usually be solved algebraically to provide values for a (675) and a (400).  The computational methodN g

of solving these equations is described in Section 3.2.1.

For waters with high concentrations of CDOM and chlorophyll, L (412) and L (443) values arew w

small, and the semi-analytical algorithm cannot perform properly.  It is thus designed to return values

only when modeled a (675) is less than 0.06 m , which is equivalent to [chl a] of about 3B4 mg m . N
B1 B3

Otherwise, an empirical algorithm for [chl a] is used, which is described in Section 3.1.2.6.  There is

presently no output for a (675) and a (400) when the empirical [chl a] algorithm is employed, butN g

empirical algorithms for these variables are under development.

3.1.2.5 Pigment Algorithm for Semi-analytical Case

When the semi-analytical algorithm returns a value for a (675), [chl a] is determined via a directN

relationship to this value.  This step requires precise knowledge of the chlorophyll-specific absorption

coefficient for phytoplankton at 675 nm, a (675).  [chl a] vs. a (675) data used to examine thisN N
*

relationship must be internally consistent.  For example, due to self-shading or pigment-packaging

(Morel and Bricaud, 1981), pigments in vivo (still within the cells) should never absorb more than the

same pigments in vitro (extracted from the cells) once solvent effects are accounted for, yet the literature

is replete with in vivo a (675) measurements far exceeding 0.025 m [mg chl a] .  This value is higherN
* 2 B1

than the in vitro specific absorption coefficient at the red peak for pure chlorophyll a in solution, which

is about 0.0203 m [mg chl a]  for solution in acetone (Jeffrey and Humphrey, 1975) and about 0.01712 B1



[chl a] ' P0 ( [ a (675)]
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m [mg chl a]  for solution in methanol (unpublished results from our lab), but it allows for some2 B1

absorption by pheopigments and accessory pigments.

To evaluate variations of a (675) with [chl a], we developed our own subtropical data set toN

explore some of the variation in a (675) under high-light conditions.  This data set came from surfaceN
*

water samples from several Gulf of Mexico cruises (BONG 1, BONG 2, BOSS 1, and WFS) and one

cruise to the Arabian Sea (TN048).  Linear regression of log([chl a]) vs. log(a (675)) yields an equationN

of the form

For the data set mentioned above, the regression resulted in p  and p  values of 56.8 and 1.03 (n = 95, r =0 1
2

0.97 on the log-transformed values).  This regression and the data are shown in Figure 4. These values

were adjusted slightly to 51.9 and 1.00, respectively, to simplify by elimination of  the nonlinear term for

use with global, subtropical data sets.

3.1.2.6 Pigment Algorithm for the Default Case

When the semi-analytical algorithm does not return a value for a (675), we provide an empirical,N

two-wavelength algorithm for [chl a] to use by default.  Aiken et al. (1995) found that the

L (488)/L (551) ratio is best for empirical [chl a] determination.  We use an equation of the formw w

where

[chl a]  is called the "empirically-derived" or "default" chlorophyll a concentration, and c , c , and cemp 0 1 2

are empirically derived constants.
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Figure 4.  [chl a] vs. a (675) a) in logarithmic scaling andN

b) in normal scaling.  In both charts the line is the equation
[chl a] = 56.8[a (675)]  .  This equation is the result ofN

1.03

linear regression on the log-transformed values (n = 96, r2

= 0.97).

A subtropical and temperate summer data set was constructed from stations from the MLML 2,

GOMEX,  COLOR, and TN042 cruises, and from stations below 45 EN from the TT010 cruise (Table 2). 

This data set includes both open-ocean and riverine-influenced stations.  Quadratic regression of log([chl

a]) against log(r ) for measured [chl a] and R (8) in this data set resulted in values of c  = 0.289, c  =35 rs 0 1

B3.20, c  = 1.20, and c  = 0.00 (n = 62), yielding a root mean square (RMS) error of 0.51.  The data and2 3

the regression line are shown in Figure 5.



[chl a] ' w [chl a]sa % (1 & w)[chl a]emp
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Figure 5.  [chl a] vs. R (488)/R (551) in log-log scaling.rs rs

The line represents a quadratic regression on the log-
transformed value.  This line describes the default [chl a]
algorithm.

(19)

3.1.2.7 Weighted Pigment Algorithm

Another consideration is that there should be a smooth transition in [chl a] values when the

algorithm switches from the semi-analytical to the empirical method.  This is achieved by using a

weighted average of the [chl a] values returned by the two algorithms when near the transition border. 

When the semi-analytical algorithm returns an a (675) value between 0.015 and 0.03 m , [chl a] isN
B1

calculated as

where [chl a]  is the semi-analytically-derived value and [chl a]  is the empirically derived value, andsa emp

the weighting factor is w = [0.03Ba (675)]/0.015.N

3.1.2.8 Total and Phytoplankton Absorption Coefficients

The phytoplankton absorption coefficients, a (8 ), are calculated by inserting the modeledN i

a (675) value into Eq. 12 and using the necessary parameters from Table 1 for each wavelength.  TheN
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total absorption coefficients, a(8 ), are calculated by inserting the modeled a (400) value and the Si g

parameter from Table 1 into Eq. 14 to get a (8 ), then combining them with the a (8 ) values in Eq. 11.g i N i

3.2 Numerical computation

a (675) and a (400) are determined from Eq. 15 by inverting one of the equations to isolateN g

a (400), substituting into the other equation, and moving all terms to one side, yielding a function thatg

depends only on a (675) (given values for R  and Table 1 for the algorithm parameters).  The value ofN rs

a (675) at which the function crosses zero is the solution we seek.  This solution is determinedN

computationally via the bisection method.  A 33-element array of a (675) values, scaled logarithmicallyN

from 0.0001 to 0.06 m  is created, and the function is evaluated at the two extrema.  If the functionB1

changes sign between the two outermost values, a solution exists on the a (675) interval.  The function isN

then evaluated at the mid-point of the array, and the half in which the function changes sign becomes the

new search interval.  In this manner, the solution interval, which will be two adjacent points on the

a (675) array, is determined in 5 iterations.  Linear interpolation across the interval yields the semi-N

analytical a (675) value, and a (400) is determined via either one of the R -ratio equations using theN g rs

modeled value of a (675).  If the function does not change sign across the two outermost values, a switchN

is made to the empirical, two-wavelength default algorithm.

When compared to an older lookup-table-based method (Carder et al., 1991), the bisection

method gave identical solutions to within 5 significant digits for a (675) and a (400), and the code ran inN g

75% of the time that the lookup-table-based version of the code took.

The algorithm code is written in ANSI C.  The program file contains about 300 lines of code and

comments.  It was developed and tested on a DEC Alpha machine which uses the DEC OSF/1 C

Compiler.  All of the algorithm parameters listed in Table 1 are read in from a file, so different parameter

tables can easily be constructed for different applications.  The code is available via anonymous ftp at:

gold.marine.usf.edu locates at /pub/swf_alg/

4.0 Algorithm Evaluation

4.1 Statistical criteria

To evaluate algorithm performance we generated statistics that are determined on log-

transformed variables so as to provide equal weighting to data from all parts of the pigment and

reflectance ranges. The slope and intercept values are from Type II RMA regressions.  The RMS statistic

described is based on the root-mean square of the logarithm of the ratio of modeled-to-measured values
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(O’Reilly and Maritorena, 1997) and will be referred to here as RMS1.  We also generated values for r2

and root-mean-square error on the non-log-transformed (linear) data.  Our RMS statistic will be referred

to as RMS2 and is described by

where x  is the modeled value of the ith element, x  is the observed (or in situ or measured) value ofmod,i obs,i

the ith element, and n is the number of elements. Note that 10 -1.0 . RMS2 if there is no bias betweenRMS1

the modeled and measured data.

We used two graphical means of evaluating algorithm performance: scatter plots of modeled

versus observed values and quantile-quantile plots (O'Reilly and Maritorena, 1997).

4.2 Tests with USF data (Carder data set)

We initially tested our algorithm with our own data set, called the Carder data set in the

Evaluation Data Set chapter (Maritorena et al., 1997).  However, the data set we present here differs from

the Carder data used in the global evaluation data set in two ways.  First, we include observed values of

a (675), and a (400) wherever possible to accompany the observed R (8) and chl a.  Second, 17 points ofN g rs

high-chlorophyll, high-scattering stations, mostly from the Mississippi River Plume region, are included. 

The data sources are listed in Table 2.

R (412), R (443), R (490), R (510), and R (555) were derived from hyperspectral R (8)rs rs rs rs rs rs

measurements collected just above the sea surface (for measurement protocols, see Lee et al., 1996) by

weighting to simulate the SeaWiFS band responses (Barnes et al., 1994).  All chl a values were

determined fluorometrically (Holm-Hansen and Riemann, 1978).  a (675) was determined as describedN

in Section 3.1.2.3.1.  a (400) was determined by measuring 0.2 uM filtered seawater in ag

spectrophotometer.

Algorithm performance was evaluated on both the n=87 subset of stations which correspond to

the data available in the SeaBASS evaluation data set provided by Carder and on the full n=104 set.  The

algorithm parameters used are shown in Table 1.  For the n=87 subset, all but one of the points were

determined via the semi-analytical portion of the algorithm.  chl a, a (675), and a (400) were predictedN g

with RMS1 errors of 0.122, 0.131, and 0.252, respectively, and RMS2 errors of 0.289, 0.302, and 0.405,

respectively.  All of the statistics for this and for all evaluations are shown in Table 4.  The results are
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shown as scatter (Figure 6a) and quantile (Figure 6c) plots.  The crosses on the plots are the points

determined with the semi-analytical blended algorithm, and all but 4 of these points are from the n=87

data set.  The chl a and a (675) data appear to be quite evenly clustered about the one-to-one line on bothN

scatter and quantile plots with no tails at either end.  The a (400) points are predominantly below theg

one-to-one line and show a very low bias.  There are only 26 points in this plot because measured values

of a (400) are infrequently available for comparison.g

4 of the 17 additional high-chlorophyll points are determined by either the semi-analytical or

blended portion of the algorithm.  chl a  values for the other 13 points are thus determined by the default

empirical algorithm.  However, since the default portion of the algorithm does not yet return values for

a (675) and a (400), these high-chlorophyll points add little to the tests for those variables.  The RMS1N g

and RMS2 errors for chl a for this composite data set were 0.132 and 0.300, respectively.  The results are

also shown in Figure 6a and 6c (diamonds).  The additional high-chlorophyll points extend nicely along

the one-to-one line on both the scatter and quantile plots. 

4.3 Tests using a global data set

A large (n=919) global evaluation data set consisting of measured R  values at the SeaWiFSrs

wavelengths and pigment measurements was collected by the NASA SeaWiFS Project for the SeaBAM

algorithm intercomparison exercise (Maritorena et al., 1997).  These data came from various researchers

around the U.S. and Europe.  There were no observed (in situ) values of a (675) or a (400) provided inN g

this data set.  In addition to these data, we have received 36 data points from the equatorial Pacific,

which consisted of R  measurements made above the surface (EqPac, courtesy of C. Davis), and wers

collected additional data sets from the Southern California Bight (04/97 with G. Mitchell), near Hawaii

(02/97 with D. Clark), and the Kuroshio edge of the E. China Sea (05/97 with G. Gong).  An additional

SeaBAM data set provided EqPac  Rrs determinations from below water for algorithm comparisons for

both methods. The SCB data provided an opportunity to measure above-water Rrs and to measure

phytoplankton absorption spectra for conditioning absorption parameters for a region exhibiting higher 
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Figure 6.  Algorithm performance for Carder data set.  Top panels are observed
vs. modeled chl a, middle panels are observed vs. modeled a (675), and bottomph

panels are observed vs. modeled a (400).  Left panels are scatter plots and rightg

panels are quantile-quantile plots.  The lines are the one-to-one lines in all panels.
SA (cross) indicates points which are calculated semi-analytically or by a blend of
semi-analytical and empirical values.  EMP (diamond) indicates points that are
calculated empirically.
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levels of pigment packaging than do our subtropical stations. This Apackaged@ parameterization is used

for modelling the multi-year CalCOFI data set of subsurface Rrs values  provided to the SeaWiFS data

archive by G. Mitchell. The Hawaiian and E.China Sea data sets provided additional oligotrophic data

and data from the planned prime site for vicarious calibration for both SeaWiFS and MODIS.

Since many different locations and sensors were involved with the global data collection, and as

many as four separate sensor channels must be well calibrated to provide accurate spectral ratios of R ,rs

an attempt was made to select an initial core set of data consistent  with Case 1 waters and with each

other.  Also, an attempt was made to partition the data sets into one for regions where little pigment

packaging is to be expected (e.g., high-light, non-upwelling locations in warm, tropical and subtropical

waters), and one where more packaging might be expected (e.g., western boundary upwelling, non-

summer, high latitude, etc.).  To help in this task, the data were examined with the help of two numerical

filters.

The first numerical filter developed was to compare the data sets with the CZCS chlorophyll

pigment algorithm (C = 1.14 [r ] , r  = R (443)/R (555)) to check for consistency with this classical25 25 rs rs
-1.71

algorithm for Case 1 waters.  Figures 7d, 8d, and 9d show scatter-plots of observed chl a versus r for25 

different groups of data, with the CZCS algorithm illustrated by the dotted line. The warm-water,

subtropical and tropical data sets (Figure 7d) were mostly consistent with the CZCS algorithm for

pigment values less than about 1 mg m .  When data from eastern boundary and upwelling locations-3

(Figure 7c) were applied to the CZCS algorithm, however, they provided chlorophyll a values typically

50% to 90% lower than measured, suggesting that perhaps regional algorithms are needed to obtain best

results for such waters.  This helped separate the data into two water types, which we will call

Aunpackaged@-pigment waters and Apackaged@-pigment waters.  Since this Apackaging@ filter is not

applicable using only spacecraft-derived data, a second type of packaging filter was sought.

A second numerical filter was developed using the ratios r  (= R (412)/R (443)) and r (Figures12 rs rs 25 

7b and 8b).  For waters with unpackaged pigments, the line r  = 0.95 [r ]  was used to separate high-12 25
0.16

gelbstoff  data points (those below the line in Figures 7b, 7b) from the Case 1 data. Based upon the

Carder a  data, the gelbstoff-rich Case 2 data  had a (400) values typically in excess of the relationshipg g

0.12 [chl a] , where 0.12 has the units m  (mg chl) .  Since this data set contained both gelbstoff and0.7 2 -1

chlorophyll a measurements and had been acquired by making R  measurements against a reflectancers

standard, minimizing calibration uncertainties (see Carder and Steward, 1985), it was used to evaluate

tropical and subtropical waters for gelbstoff-rich conditions, to identify data sets with more packaging,

and to flag data sets with possible sensor-calibration uncertainties. 
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To learn to identify waters with more packaged pigments using remotely sensed data, Case 1

data from a traditional upwelling region (e.g., CalCOFI) were examined.  These data are shown in Figure

8b for comparison to the unpackaged data of Figure 7b.  Since pigment packaging reduces the absorption

for a given concentration of pigments far more at 443 nm than at 555 nm, and somewhat more at 443 nm

than at 412 nm, packaging significantly reduces r while increasing the r   ratio somewhat. This, then25 12

places packaged data points below the r  = 0.95 [r  ]  line even without excessive gelbstoff12 25
0.16

concentrations (Fig. 7b), at least for points with r values in excess of a value of about 3.0.25 

For us to be certain that the numerical filter approach works consistently at separating even more

heavily packaged data sets from unpackaged ones,  more data sets need to be evaluated.  Measurements

of particulate and detrital absorption would be useful. A nascent outline of an approach to vary algorithm

parameters using measurements from space is suggested by our work with the r  vs. r  numerical filter. 12 25

This approach will be supplemented with a temperature-anomaly approach based upon estimating

regions experiencing nutrient-replete conditions (Kamykowski 1987).  This should improve our facility

and accuracy in modulating the pigment-absorption parameters for future ocean-color algorithms.

4.4 Algorithm evaluation with the "unpackaged" data set

 Those data sets generally found consistent with the CZCS algorithm line as well as occurring

above the line r  = 0.95 [r ]  for points where r  > 3.0, were classified as Aunpackaged@, in reference12 25 25
0.16

to the pigment effects on the optics prevalent at those locations at the time of data collection.  There are

287 data points in this ensemble data set: 134 USF data points and 37 EqPac equatorial Pacific points, all

measured above-surface and processed using the Lee et al. (1996) protocols, and 126 EqPac points, all

measured below-surface using the Mueller and Austin (1995) protocols.  Of these points, 261 (91%)

were processed by the semi-analytical portion of the algorithm yielding RMS1 and RMS2 errors of 0.099

and 0.230, respectively.  The scatter (Figure 7a) and quantile (Figure 7b) plots overlay the one-to-one

line at the ends as well as in the middle.  For the log-transformed variables, the Type II RMA slope was

0.999, the bias was 0.002, and r was 0.873.  When all 287 data points were considered using the semi-2 

analytical algorithm plus the blended and empirical algorithms, RMS1 and RMS2 errors were 0.108 and

0.242, respectively.  The Type II RMA slope and intercept was 0.973, the bias was -0.003, and r  was2

0.955.  Table 4 has a a complete summary of these statistics. Note that since these algorithms are largely

semi-analytical in nature and were generated using mostly Gulf-of-Mexico data for the parameterization,

one would not expect to always have slope values of 1.000 and bias values of 0.000 as result from

empirical regression algorithms fit to a single data set.  Note also that the r  values increased using the 2
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blended algorithm because of the extended range of chlorophyll a. RMS2 errors of less than 25% exceed

our accuracy goal of 35% or less.

4.5 Algorithm evaluation with the "packaged" data set

Several data sets within the global evaluation set were numerically diagnosed as coming from

waters where the pigments were much more "packaged"  than those from the warm, tropical and

subtropical data sets evaluated earlier.  The other data sets in the archive appeared to contain perhaps

both packaged and unpackaged data. Simulations of the optical properties for these regions required

some minor alterations of the phytoplankton absorption characteristics, based upon the decreased

specific absorption values observed in the California Current area during the CalCOFI 9704 cruise.  The

new parameters, shown in Table 3, are used to define a slightly different, Apackaged@ algorithm.

There are 326 points in an ensemble of multi-year data sets from the California Current which

we label as "packaged."  These consist of CalCOFI (n=303) and Cal9704 (n=23) data which we recently

collected with G. Mitchell.  The CalCOFI data were subsurface while the Cal9704 data were above-

surface collections.  303 points (93%) from this  Apackaged@ data set passed the semi-analytical portion

of the new algorithm, yielding RMS1 and RMS2 errors for chl a retrieval of 0.111 and 0.268,

respectively.  The Type II RMA slope and intercept was 0.999, the bias was -0.006, and r  value was2

0.917.  The scatter plot (Figure 8a) overlays the one-to-one line and the quantile plot (Figure 8b) is linear

and overlies the line, but has a slight discountinuity near a chlorophyll value of 3.  Using the blended

algorithm on 326 data points, the r  increased to 0.951 while the other statistics remained about the same2

(Table 4). RMS2 errors of about 28% also exceeds our accuracy goal of 35% or less

4.6 Algorithm evaluation with a global data set

To generate an algorithm to transition from regions and periods with packaged and unpackaged

pigments, we developed a global data set combining the Apackaged@, Aunpackaged@, and other mixed data

sets from SeaBAM.  This data set has 976 data points.  We then developed a set of compromise

parameters for this Aglobal@ average algorithm, shown in Table 3, for use at times and places where

"packaging" is unknown or transitional.  For this data set and these "average" parameters, 883 points

(90.5%) of the points passed the semi-analytical portion of the algorithm, yielding RMS1 and RMS2

errors in algorithm-derived chl a of 0.176 and 0.446, respectively.  The Type II RMA slope was 1.003,

the bias was 0.002, and r  was 0852.  Statistics for the entire n=976 set were similar except r  was higher2 2

(0.913).  The scatter plot (Figure 9a) looks evenly clustered about the one-to-one line and the quantile 
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plot (Figure 9b), though wiggly, overlays the one-to-one line for the most part. Note that if we are unable

to accurately specify the packaging domains of the world ocean, a compromise, blobal algorithm with

about 44% accuracy is likely to be the best accuracy that we can achieve.

5.0 Discussion

The biggest limitation to algorithm development for the global ocean is a paucity of bio-optical

field data from around the globe that are complete with ancillary particle and gelbstoff absorption

spectra.  These data are needed in order to assess the spatial and temporal variation in the key algorithm

parameters X, Y, S, a (400), and most importantly, a (8) and a (8).  In order to derive chl a, it is vitallyg 0 1

important to be able to predict how a (8) will vary.  Thus, we must study the effect of light history,N
*

which is related to season, cloudiness, latitude, and nutrient history, which is influenced by mixed-layer

depth, upwelling, river plumes, and offshore/onshore proximity.

5.1  High b  pixelsb

Since the R  model does not specifically account for absorption and backscattering fromrs

suspended sediments or coccolithophores or for reflection from the bottom, a method is needed to

determine which pixels are influenced by any of these.  Such waters will be referred to as "high-b  Caseb

2" waters, as opposed to high-gelbstoff Case 2 waters, which the model explicitly accounts for. 

Although not yet implemented, a possible means of identifying high-b  Case 2 stations is to examine theb

R (670):R (555) ratio. Retaining b (8) in the denominator of Eq. 1 is required, and the site-specificrs rs b

behavior of sediment absorption characteristics must be known. A new spectral, backscatter-coefficient

meter is now commercially available and will help with X and Y parameterization.

5.2  a  in other environmentsN

We have learned from trends in the data observed so far that the unpackaged, semi-analytical

algorithm performs as well with temperate summer data (TT010 north of 45  and MLML 2 north of 50 )0 0

as it does with subtropical data for all seasons.  How, then, might temperate data from other seasons

and/or data from upwelling and high-latitude areas differ from the temperate summer, non-upwelling

data?

To initially address this question we compare a (8) data from MLML 1 (May, 50 B60  N),N
0 0

MLML 2 (August, 50 B60  N), TT010 (July, north of 45 ), Monterey Bay (fall, upwelling region), and 20 0 0

coastal upwelling stations from the Arabian Sea.  Although the Arabian Sea data points were collected
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Figure 10.  a (443)/a (675) vs. a (675) for stations from various non-N N N

subtropical environments.  The solid line is the function used in the
Aunpackaged@ semi-analytical algorithm.  The dashed lines represent the
lower and upper bounds for all of the absorption ratio data that we have
collected (not shown) and the dotted line approximates the median trend.

from a subtropical summer (June) environment, the water was about 4 C cooler than offshore waters,0

indicating a lower-light, nutrient-rich, upwelling source, conditioning the water for highly packaged,

fast-growing species such as diatoms.  This is manifest in Figure 10, where these data fall among the

more packaged points.  Here, the ratios of the blue peak to the red peak, a (443):a (675), are plotted as aN N

function of the height of the red peak itself, a (675), which can be thought of as an indicator of pigmentN

concentration.  The subtropical algorithm values (solid line) and trend lines for the high and low out-

lying points for the entire data set (dashed lines) are also shown.  The dotted line represents a median

trend for the entire Carder data set, and it approximates the mean line for two years of data from the

Southern California Bight (SCB) (B. G. Mitchell, personal communication).  The SCB data also ranged

widely between the top and bottom dashed curves.
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The first thing to note in Figure 10 is how well the subtropical line is followed by the high-

latitude summer data.  In fact, two of the summer TT010 points along the Washington coast fall among

the highest of the subtropical data.  The phaeocystis-rich, spring-bloom, MLML 1 data, however,

represent data with the lowest specific absorption coefficients of the entire study.  Similarly, upwelling

data from the Arabian Sea and Monterey Bay fall below the median line for the data set.  These data

trends suggest that there is less packaging in summer temperate data than at other times.  Maximal

packaging appears associated with high-latitude, low-light, spring bloom stations (MLML 1) and with

typically cloudy upwelling sites.  The data also suggest that, as we saw in Section 4, a single global

algorithm will lack the accuracy needed to address data sets that include subtropical, high-latitude, and

upwelling areas.  For the non-subtropical areas, some of the parameters in Table 2 may need to be

functions of region and season.

6.0 A Strategy for Implementation of Variable Package Parameters

While algorithms appropriate for regions with packaged or unpackaged pigments can reduce the

uncertainty in chlorophyll-a concentration from perhaps 50% to less than 30%, methods to determine

when and where  to apply appropriate parameterization based upon space-derived data are still under

development. A numerical filter approach has already been discussed, but it is only useful for

oligotrophic waters where r  > 3.0, and high gelbstoff concentrations cause confusion. This approach25

needs to be compared and augmented by at least one other method.  A second approach uses the fact that

unpackaged pigments are usually found in high-light, nutrient-poor waters where small-diameter

phytoplankton cells predominate (e.g. Herbland et al. 1984; Carder et al. 1986). Since dissolved nutrients

cannot be detected from space, a nutrient surrogate was sought.

Kamykowski (1987) developed a model that explained much of the covariance observed between

upper-layer temperature and nitrate concentrations (e.g. Zentara and Kamykowski, 1977; Kamykowski

and Zentara, 1986). Kamykowski (personal communication) has since developed nitrate-depletion

temperatures (NDTs) for the global ocean.  These NDTs provide a means to observe from space a

variable that indicates when and where nitrate may be limiting phytoplankton growth, and where upper-

layer production is dependent upon recycled nitrogen. Such phytoplankton are typically small (Herbland

et al., 1984) with unpackaged pigments (Carder et al., 1986). 

To delimit regions with pigments without self-shading or packaging, we propose to compare

monthly sea-surface temperatures to Kamykowski’s NDTs.  Figure 11 shows annual trends in sea-

surface temperature (SST), chlorophyll a [Chl a], and NDTs for the Gulf of Maine, Bermuda, and 
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Figure 11. Four-year (1982-1985), monthly-mean values of sea-surface temperature
(triangles), CZCS pigment (asterisks), and nitrate-depletion temperature (diamonds)
for locations near a) the Gulf of Maine, b) Bermuda, and c) Barbados.
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Barbados. The temperatures and pigments are four-year (1982-85) monthly averages from the AVHRR

and CZCS sensors (USA_NASA_JPL_PODAAC_A005). Note that by this approach, pigments in the

Gulf of Maine are rarely designated as being unpackaged, those near Barbados are always designated as

being unpackaged, while those near Bermuda are  designated as being unpackaged in the summer and

packaged in the winter-spring.

Clearly the Gulf of Maine is a lower-light and higher-nitrate environment than are Bermuda

waters, so the degree of packaging there is likely to be much higher. To indicate a higher degree of

packaging, we propose a Apackaged@ temperature range, SST  < NDT - 0.5 C, below which packaging isp
o

significant.  For waters with pigments expected to have little or no packaging, we propose an

Aunpackaged@ temperature range, SST  > NDT + 1.0 C.  For pixels falling in either of these two rangesu
o

the semi-analytical algorithm will use the Apackaged@ and Aunpackaged@ pigment-absorption parameters,

respectively.  For waters with temperatures between SST  and SST  the parameters will be set to thep u

Aglobal@ values (see Table 3). The regions of the north Atlantic Ocean falling within each of these

domains is shown in Figs. 12 and 13 for April and August, respectively.

This approach will be tested using  the SeaBASS bio-optical data base.  Initially, we will use

historical, monthly climatological values of SST to partition the data into three regimes to simulate

pigment packaging.  The algorithm will be tested and the results used to adjust SST  and SST  boundaryp u

values.  We expect these values to differ for spring-summer transitions compared to summer-fall

transitions due to the different seed populations available to initiate fall blooms relative to spring blooms. 

More definitive evaluations of algorithm performance can be made once actual SST values are provided

in bio-optical data sets.  

 We expect that this approach -- partitioning space-derived ocean-color data into bio-optical

regimes that reflect natural changes in pigment packaging -- can improve algorithm performance from a

best of about +/- 50% to better than +/- 30%.  Without such partitioning, meeting the MODIS ocean-

team goal of providing chlorophyll-a concentrations with accuracies of 35% or better is unlikely.

7.0 Conclusions

A semi-analytical algorithm was tested with a total of 604 points from regions where the

pigments were typically unpackaged- or packaged, with appropriate algorithm parameters for each data

type.  The "unpackaged" type consisted of data sets that were generally consistent with the Case 1 CZCS

algorithm and using well calibrated data sets.  The "packaged" type consisted of data sets apparently

containing somewhat more packaged pigments, requiring modification of the absorption parameters of 
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the semianalytical model consistent with the CalCOFI study area.  This resulted in two fairly equally

divided data sets. 

The semi-analytical algorithm performed superbly on each of the data sets after classification,

resulting in RMS1 errors of 0.102 and 0.111 (e.g. 1/10 log units), respectively, for the unpackaged and

packaged data-set classes, with little bias and slopes near 1.0.  In combination, the RMS1 performance

was 0.110. RMS2 errors for the algorithms were 24% and 28%, respectively.

While these numbers appear rather sterling, one must bear in mind what misclassification does

to the results.  Using an average or compromise parameterization on the modified global data set

yielded an RMS1 error of 0.174, while using the unpackaged parameterization on the global evaluation

data set  yielded an RMS1 error of 0.284.  So, without classification, the algorithm performs better

globally using the average parameters than it does using the unpackaged parameters. Some 372 data

points in the the Sea BASS archive were from data sets that were mixed or transitional between

Apackaged@ or Aunpackaged@ data types, not clearly falling into packaged or unpackaged classes without

more information (e.g. the BATS data from near Bermuda contained both classes). Given locations and

temperatures, we propose to use nitrogen-depletion temperatures to sort these data into appropriate

classes of packaging on a  monthly basis and reprocess the transitional data sets.

8.0 Output Products

Output products from MOD-19 will include the following:

1. Concentration of chlorophyll a for concentrations from .02 to 50 mg/m  for optically deep3

waters.

2. The absorption coefficient at 400 nm , a (400) due to gelbstoff or colored, dissolved organicg

matter.  All absorption coefficients a (λ) for 400 < λ < 700 nm can then be estimated with knowledge ofg

the spectral slope parameter S.

3. The absorption coefficient at 443 nm, a (443), due to phytoplankton; this is passed along toN

MOD-20 for calculation of  a (λ) for the visible spectrum as a contribution to the absorbed radiation byN

phytoplankton, ARP, used for fluorescence efficiency calculations.

4. The sum of  a (λ),  a (λ), and  a (λ) provides the total absorption coefficient spectrum, a (λ),w g N t

and the diffuse attenuation spectrum, (λ) = a (λ) / cos θ . See MOD-20.d t 0
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Table 1.  Parameters for the Case 2 chlorophyll algorithm for regions without packaged pigments; see
text for definitions.

wavelength dependent parameters

412 443 490 510 555

b  (m ) 0.003341 0.002406 0.001563 0.001313 0.000929bw
–1

a  (m ) 0.00480 0.00742 0.01632 0.03181 0.05910w
–1

a 2.20 3.59 2.27 1.40 0.420

a 0.75 0.80 0.59 0.35 –0.221

a –0.5 –0.5 –0.5 –0.5 –0.52

a 0.0112 0.0112 0.0112 0.0112 0.01123

wavelength independent parameters

X –0.00182 S 0.0225 c 0.28180 0

X 2.058 p 51. 9 c –2.7831 0 1

Y –1.13 p 1.00 c 1.8630 1 2

Y 2.57 c –2.3871 3
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Table 2.  List of cruises with optical and bio-optical data collected by the University of South Florida
(Carder data set).  Numbers in parenthesis in the far left column indicate the number of stations
included in the global evaluation data set.

cruise start date end date region # stations

MLML 2 13 Aug 91 29 Aug 91 North Atlantic, 42ENB60EN 7 (3)

TT010 20 Jul 92 02 Aug 92 North Pacific, 24ENB48EN 10 (10)

GOMEX 10 Apr 93 19 Apr 93 Northern Gulf of Mexico 21 (17)

COLOR 31 May 93 09 Jun 93 Northern Gulf of Mexico 13 (4)

TN042 29 Nov 94 18 Dec 94 Arabian Sea 12 (12)

TN048 21 Jun 95 13 Jul 95 Arabian Sea 41 (41)

                                                                                                                                           total =104(87)

Table 3.  Algorithm parameters used with the "packaged" and modified global data sets.  All algorithm
parameters not listed here are the same as in Table 1.  The values of a (8) shown apply to all of the3

SeaWiFS wavelengths.  The equation to determine chl a from a (675) for this data set is given byN

Equation 21.

parameter packaged global

a (412) 1.90 1.950

a (443) 2.70 2.950

a (490) 1.90 1.990

a (8) -0.45 -0.52

a (8) 0.021 0.0253

p 74.1 72.40

p 1.0 1.01

p 0.0 0.02

c 0.4818 0.31470

c B2.783 B2.8591

c 1.863 2.0072

c B2.387 B1.7303
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Table 4.  Summary of regression statistics for each data set tested.  The unpackaged data consists of the
Carder, EqPac above-surface, EqPac below-surface, Taiwan, and MOCE3 data sets.  The packaged data
consists of the CalCOFI,  and CAL9704 data sets.  The global data consists of the global evaluation data
set, minus the Cota and U. Maryland data plus the high-chlorophyll Carder,  EqPac above-surface,
Taiwan, and MOCE3 data, and uses one set of average algorithm parameters for the whole data set.  SA
indicates that only the modeled values that passed the semi-analytical portion of the algorithm are used
(including blended values).  SA+EMP indicates that all modeled values—semi-analytical, blended, and
empirical—are used.  All statistics except RMS2 are calculated from log -transformed variables.10

data set variable n intercept slope bias R RMS1 RMS22

Carder chl SA 86 0.019 1.020 0.010 0.921 0.122 0.289

Carder chl SA+EMP 104 –0.007 0.977 –0.002 0.963 0.132 0.300

Carder a (675) SA 82 0.098 1.052 –0.008 0.898 0.131 0.302

Carder a (400) SA 26 –0.278 0.905 –0.186 0.751 0.252 0.405g

unpackaged chl SA 261 0.001 0.999 0.002 0.873 0.099 0.230

unpackaged chl SA+EMP 278 -0.019 0.973 -0.003 0.955 0.108 0.242

packaged chl SA 303 -0.006 0.999 -0.006 0.917 0.111 0.268

packaged chl SA+EMP 326 0.004 1.012 -0.003 0.951 0.114 0.282

global chl SA 883 0.002 1.003 0.002 0.852 0.176 0.446

global chl SA+EMP 976 0.003 1.003 0.002 0.913 0.174 0.440


